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Abstract

This paper is devoted to an experimental investigation of concentration variance di�usion in a grid generated
turbulent ¯ow. Combined laser-induced ¯uorescence applied to concentration measurement and two-dimensional

laser-Doppler velocimetry are implemented in order to measure simultaneously and instantaneously the molecular
concentration of the passive tracer and two components of the carrier ¯ow velocity. The di�erent terms of the scalar
variance transport equation can be measured directly in order to deduce the scalar ¯uctuations dissipation rate. It is
shown that the approximation scalar variance advection2dissipation is valid, similarly to the decay of turbulent

kinetic energy in the wake of a grid. The simultaneous determination of both scalar variance and kinetic energy
dissipation rates permit an experimental determination of the scalar to velocity time scale ratio. Finally, an analysis
of the self similarity of the ¯uctuating concentration ®eld is also provided. # 2000 Elsevier Science Ltd. All rights

reserved.

1. Introduction

The investigation of the di�usion of a passive scalar
such as concentration in a steady turbulent ¯ow®eld

requires a ®ne analysis of the mean and ¯uctuating

concentration ®elds. The importance of the ¯uctuating
concentration ®eld is revealed in the mixing processes

with possible chemical reactions or in air pollution
problems where the maxima or the persistence of a

given concentration are useful parameters [1]. This

article is mainly devoted to the variance of concen-
tration ¯uctuations of a passive contaminant, issuing

from a point source and di�using in a statistically

homogeneous and isotropic turbulent ¯ow®eld. The
measurement of the dissipation rate of the concen-

tration ¯uctuations variance ec de®ned by:

ec � s
@c

@xi

@c

@x i
�1�

may allow the determination of the scalar dissipation

scale, characterizing the interaction of the energy-con-
taining eddies with the scalar ®eld analogously to the
Taylor microscale. In turbulent mixing processes,

where chemical reactions are involved, the chemical
reaction rate is governed by the scalar ®eld dissipation
microscale, which is related to the concentration ¯uctu-

ations variance dissipation rate, as [2]:

l2c �
12s
ec

�c2 �2�
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Moreover, Batchelor [3] has demonstrated that the

passive scalar spectrum presents an inertial range ana-
logous to the inertial range of the ¯uctuating velocity
spectrum, where the properties of the spectrum depend
only on the concentration variance dissipation rate ec

and on the molecular di�usivity s:
An other important point for improving the knowl-

edge about the concentration variance dissipation rate

is the closure problem of the transport equations of
the passive scalar. In order to take into account the
external forces like gravity, a second order closure of

the turbulent mass ¯ux must be considered [4,5]. The
general equation governing the turbulent mass ¯ux uic
in a turbulent ¯ow®eld may be written as:
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where r is the ¯uid speci®c density, s is the molecular
di�usivity, n is the kinematic viscosity, gi is the gravita-
tional acceleration and a is the dimensionless volu-

metric expansion coe�cient. The term of mean
squared concentration ¯uctuations appears directly in
the buoyant source of the turbulent mass ¯ux

equation. The general equation governing the evol-
ution of the mean squared concentration ¯uctuations
may be written as [6]:
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One of the more important term, which requires a

modelisation is the dissipation rate of the concen-
tration variance ec: An usual way to determine ec is to
use the scalar to velocity time scale ratio R, de®ned by:

R � eq
kec

�5�

where k is the kinetic turbulent energy, e its dissipation
rate and q is de®ned as q � 1

2c
2: However, numerous

disagreements exist relevant to the value of the ratio
R, which, according to Launder [6] may be not a uni-
versal constant and may strongly depend on the exact

nature of the ¯ow®eld. An alternative way is to deter-
mine ec from its own transport equation. However, the
discussion about the ec equation is open because of a

lack of measurements of ec in simple ¯ow®elds [6].
Csanady [1] as Gibson and Schwarz [7] have

assumed, for a homogeneous and isotropic turbulent
¯ow®eld, that the concentration variance dissipation

rate is related to the decay law of the concentration
¯uctuations, similarly to the kinetic energy decay law
in the wake of a grid. Moreover, a few authors such as

Csanady [1] and Nakamura et al. [8] pointed out the
self preservation of the concentration ¯uctuations var-
iance in a grid generated turbulent ¯ow. Nakamura et

al. [8] checked experimentally this self-preservation
with the help of mean and ¯uctuating concentration
measurements of a di�usive passive contaminant.

Nomenclature

C molecular concentration
Cc centerline molecular concentration
d nozzle diameter

Dt turbulent di�usivity
k kinetic energy
gi gravitational acceleration

M grid mesh
P pressure
(r, Y, x ) cylindrical coordinates

rc concentration pro®le half width radius
Ui velocity component in the direction i
U streamwise velocity component
V radial velocity component

Greek symbols
a volumetric expansion coe�cient

e kinetic energy dissipation rate
ec scalar variance dissipation rate
Z � r=rc non-dimensional radial distance

lc scalar dissipation microscale
lu dynamic dissipation microscale
n kinematic viscosity

r speci®c density
s molecular di�usivity

Other symbols

� normalized values
X instantaneous value of X
�X averaged value of X

x ¯uctuating part of X
X � �X� x Reynolds decomposition
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However, no direct measurements of the turbulent
mass ¯ux uic and of the triple correlation uic2, both

present in the scalar variance transport equation have
been provided by these authors. The problem of the
closure of the turbulent mass ¯ux uic has been dis-

cussed by Lemoine et al., in a statistically homo-
geneous and quasi-isotropic turbulent ¯ow®eld [9,10].
The present paper provides direct measurements of the

di�erent terms of the concentration variance equation
and discusses the orders of magnitude of these terms.
The dissipation rate of the concentration variance is

determined with the help of a budjet on the concen-
tration variance transport equation. In order to per-
form these measurements, the laser-induced
¯uorescence technique, applied to the concentration

measurement in liquid media has been implemented in
order to measure mean and ¯uctuating concentration.
Laser-induced ¯uorescence technique has been com-

bined with the laser-Doppler velocimetry as described
in the Refs. [9±12] in order to measure simultaneously
and instantaneously, in the same sample volume the

concentration (or temperature in Ref. [12]) and two-
dimensional (2D) velocity ¯uctuations. By using this
technique, the double and triple correlations uic and

uic2 are accessible.

2. Flow conditions and experimental set-up

2.1. Flow conditions

The ¯ow®eld consists in a statistically homogeneous

and quasi-isotropic turbulent ¯ow, generated by means
of a grid, in a square test channel. The characteristics

of the test channel and of the grid are given in Ref.
[10]. The passive contaminant is injected in the center
of the test channel, at 280 mm downstream of the grid,

by means of a round nozzle (Fig. 1). The injection vel-
ocity is similar to the turbulent ¯ow velocity, in order
to avoid shear e�ects. The mean ¯ow velocity is about

1.65 m/s which corresponds to a mesh Reynolds num-
ber of 16,500. The measurements have been performed
from x=M � 38 to x=M � 52 in the initial period of

the decaying grid turbulence. The diameter of the
injection nozzle has been reduced to 1 mm in order to
limit the e�ects of the wake of the injection pipe. As
shown in Ref. [10], the turbulent ®eld can be con-

sidered as statistically homogeneous and quasi-isotro-
pic, although a larger turbulence intensity observed on
the streamwise component. The rate of turbulence is

about 3% and the turbulence intensity decays down-
stream of the grid. The streamwise decay of turbu-
lence, shown in Fig. 2, can be written as:

�U
2

u2
� 1:574

�
x

M

�1:66

�6�

The dissipation rate of the kinetic turbulent energy can
be inferred from the streamwise decay of kinetic energy

(derivation of Eq. (6)):

e � ÿ �U
dk

dx
� 3

2
�U
3 0:47

M

�
x

M

�ÿ2:66
�7�

Fig. 1. Experimental arrangement.
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2.2. Measurement set-up

Combined laser-induced ¯uorescence and 2D laser-
Doppler velocimetry have been used in order to
measure simultaneously and instantaneously in the

same probe volume, the molecular concentration of the
di�usive tracer and two components of the velocity.
All the important features and details of the exper-
imental measurement techniques are given in the Refs.

[10,11]. The main component of the set-up is a 2D
laser-Doppler velocimeter (DANTEC). The passive
contaminant is a ¯uorescent organic dye, rhodamine

B, highly diluted in water (molecular concentration,
C � 10ÿ6 mol/l). The ¯uorescence of this dye can be
e�ciently induced by the green radiation �l � 514:5
nm) of the argon-ion laser of the velocimeter. The
emitted ¯uorescence is proportional to the molecular
tracer concentration [11,13]. The optical signal is col-

lected by means of an optical device, and is separated
and ®ltered subsequently. The optical signal contains:

. the scattered light at l � 488 nm (®ltered by a

dichroic blade),
. the scattered light at l � 514:5 nm (®ltered by a

dichroic blade),
. the large-bandwidth ¯uorescence of rhodamine B

(®ltered by a high-pass ®lter, cut-o� 550 nm).

The scattered light at l � 488 and l � 514:5 nm are
separately converted to an electrical current by means

of photomultiplier tubes and the Doppler signals are
processed by fast Fourier transforms using Burst
Spectrum Analyser (DANTEC), which provides a

more accurate measurement than the frequency track-
ers used in Refs. [9,10]. The ¯uorescence intensity is
measured by means of a photomultiplier tube, which

provides an analogical signal, proportional to the con-

centration. The analogical signals, relevant to the vel-
ocity components and concentration are processed and
correlated by means of a computer associated with a
data acquisition board. Mean quantities, second-order

moments, double and triple cross-correlations between
concentration and velocity ¯uctuations are calculated
with 50,000 samples using a 10 kHz sampling fre-

quency.

3. Fluctuating concentration ®eld

3.1. General concepts

In the case of a point source discharging in a statisti-

cally homogeneous and quasi-isotropic turbulent ¯ow,
the governing equation for the concentration ¯uctu-
ations variance may be written using the boundary

layer approximation, with the use of cylindric coordi-
nates (Fig. 1):

1

2
�U
@c2

@x
� ÿcv@

�C

@ r
ÿ 1

r

@

@ r

�
r
vc2

2

�
ÿ ec �8�

All the terms of Eq. (8), e.g., quadratic means, double

and triple correlations can be measured directly using
combined LIF and LDV techniques, except the scalar
¯uctuations dissipation term ec which can be deduced
by considering the budjet on Eq. (8).

3.2. Mean concentration ®eld

The mean concentration ®eld is well characterized
by Gaussian self similar pro®les in a statistically homo-

Fig. 2. Streamwise decay of turbulent kinetic energy.
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geneous turbulent ¯ow®eld, as shown Fig. 3 in normal-
ized values. The concentration ®eld can be expressed

as [8,9]:

�C�x,Z� � �Cc�x�eÿln 2Z2 �9�

where �Cc�x� is the centerline concentration, and
Z � r=rc, where rc is the half width radius of the mean
concentration pro®le. The streamwise expansion of the

concentration plume, characterized by the half width
radius rc, is reported in Fig. 4 and follows a square
root law as predicted by the theory [8]:�
rc

M

�2

� 2:98

�
x

M
ÿ 29

�
�10�

The streamwise decay of centerline mean concen-
tration, also reported in Fig. 4, follows an hyperbolic
law given by:

1

Cc

0
�
x

M
ÿ 31

�
�11�

3.3. Concentration variance and advection term

As shown in Fig. 5, the concentration variance pro-

®les look like Gaussian. An initial concentration of
rhodamine B exists in the test channel and a previous
concentration measurement is performed without injec-

tion of the ¯uorescent tracer. Although this concen-
tration can be considered as uniform, a ¯uctuating

part is observed, due to the physical process of ¯uor-
escence itself, which follows a Poisson statistic [14].
The measured variance of uniform concentration

existing in the test channel is subtracted to turbulent
concentration variance. It can be also observed (Fig. 5)
that the variance in the edges of the pro®les is not

reduced to zero, because the optical access is not large
enough to investigate the entire pro®le. The variance
pro®les appear also self similar; the amplitude of the

concentration variance �c2 is reduced by its local center-
line value and the radial distance by the concentration
half width radius rc. A signi®cant scatter of the exper-
imental data can be observed Fig. 5. It can be attribu-

ted to the strong Poisson noise of the ¯uorescence
process itself and to the di�culty of injecting the pas-
sive tracer at the ¯ow velocity. The decay law of the

centerline value of the concentration variance, denoted
by �c2�c, is reported in Fig. 6 and follows a square root
law:

1����������ÿ
c2
�

c

q � 0:018

�
x

M
ÿ 24

�
�12�

This result is compatible with the self-similarity analy-
sis of the ¯uctuating concentration ®eld developed in
Section 4.

Fig. 3. Radial distribution of mean ¯uorescent tracer concentration. x=M: w 38; Q 40; R 42; � 44;� 46; . 48; + 50; ÿ 52. ÐÐÐ

Gaussian ®t.
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In the light of the previous investigations, the con-
centration variance is given by the following self-simi-

lar law:

c2�x,Z� �
ÿ
c2
�

c�x�g�Z� �13�

where g�Z� is a Gaussian type function. The advection

term of the concentration variance (Eq. (8)) is given
by:

1

2
�U
@c2

@x
� 1

2
�U

 
@
ÿ
c2
�

c

@x
g�Z� ÿ

ÿ
c2
�

caZ
2r2c

@g�Z�
@Z

!
�14�

Fig. 4. Streamwise distribution of the expansion length scale of the mean concentration pro®le and centerline concentration.

Fig. 5. Radial distribution of the concentration variance. x=M: w 38; Q 40; R 42; � 44; � 46; . 48; + 50; ÿ 52. ÐÐÐ Numerical

®t.
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where a � dr2c=dx is a constant [8,9].

The advection term 1
2

�U @ c2

@x is determined by means

of least squares ®ts of �c2�c�x� and g�Z� using Eq. (14).

3.4. Production term

Both the elements of the production term cv�@ �C=@ r�
term have been determined. The turbulent transverse
mass ¯ux has been measured and the mean concen-
tration gradient is calculated by simple derivation of

Eq. (9). Each vc pro®le (Fig. 7) has been normalized
by its own maximum value denoted by �vc�max and the
radial distance by the half width radius of concen-

tration rc:

vc�xZ� � �vc�max�x�h�Z� �15�

The streamwise distribution of �vc�max�x� is reported in
Fig. 8 and is ®tted with a power law. The non-dimen-
sional expression of h�Z� may be written as in Ref. [9],
where vc is modeled with a constant turbulent di�usiv-

ity coe�cient:

h�Z� � ÿZeÿln 2Z2�����������
1

2ln 2

r
eÿ1=2

�16�

3.5. Triple correlation vc2 and di�usion term

In the light of the experimental data, the triple cor-

relation vc2 (Fig. 9) exhibits self-similar antisymmetric
pro®les as the double correlation vc: The amplitude of
vc2 is reduced by its maximum value, denoted by

�vc2�max and the radial distance by the half width
radius rc of the concentration pro®le. Consequently,
with the help of the streamwise distribution of �vc2�max

reported in Fig. 10, the distribution of vc2 may be rep-
resented by:

vc2�x,Z� �
ÿ
vc2
�

max�x�k�Z� �17�

Least squares ®ts of �vc2�max�x� and k�Z� allows to cal-

culate the di�usion term 1
r
@
@ r �r vc

2

2 �:
A closure of the triple correlation vc2, as a gradient-

type representation has been suggested [15]:

ÿuic2 � K1
k

e
uiuj

@c2

@x j
�18�

Under the present ¯ow conditions and considering the
boundary layer approximation, the triple correlation
vc2 can be represented by:

ÿvc2 � K1
k

e
�v2
@c2

@ r
� At

@c2

@ r
�19�

It can be interpreted as a gradient model of the triple
correlation and the coe�cient At � K1

k
e v

2 as a turbu-

lent di�usivity coe�cient of the concentration variance.
K1 is a numerical constant, which needs to be adjusted
in the light of experimental data. The parameters k

Fig. 6. Streamwise distribution of the centerline concentration variance.
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and e representing the kinetic energy of turbulence and

its dissipation rate can be easily evaluated using Eqs.

(6) and (7) and the gradient term @c2=@r is calculated

using the present experimental data. The distribution

of At over a cross-section is reported in Fig. 11. The

values of At have been calculated with the experimen-
tal data obtained for the triple correlation vc2 and the
least squares ®t of c2 in order to evaluate the radial
gradient of the concentration variance. Although there

is a signi®cant scatter of the data, the coe�cient At

exhibits almost a constant value over the cross-section
(for the cross-section at x=M � 50). For cross-sections

closer to the injection point, constancy is reached only
for Z > 0:16: A value of At � 1:7� 10ÿ4 m2/s can be
considered. Moreover, the parameter At appears

almost constant over the entire ¯ow®eld, in the initial
period of the decaying grid turbulence, which allows
us to determine the value of the numerical constant

K1. A value of K1 � 0:31 has been determined.

3.6. Scalar variance and dissipation: budjet

The global budjet on the transport equation of the
scalar variance c2 (Eq. (8)) is reported in Fig. 12, in
normalized values. All the quantities presented in the

budjet must be normalized by the mean velocity �U, the
squared centerline concentration �C 2�c and by the
length scale rc. Most of the terms of this equation have

been determined from the analysis of the experimental
data, except the scalar variance dissipation rate ec,
which can be inferred from the budjet on Eq. (8). In

the light of Fig. 12, the di�usion and the production
terms are negligible over the major part of the cross-
section, compared to the dissipation and advection

Fig. 8. Streamwise distribution of the maximum value of the

vc cross-correlation. W Experimental data; ÐÐÐ numerical

®t.

Fig. 7. Radial distribution of the turbulent mass ¯ux in the transverse direction. x=M: w 38; Q 40; R 42; � 44; � 46; . 48; + 50; ÿ
52. ÐÐÐ Theoretical (turbulent di�usitivity model).
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terms. It demonstrates clearly that the approximation
�U @ c2

@ r 1ÿ ec is valid over the major part of the ¯ow-
®eld. This relation seems to be analogous to the decay

of turbulent kinetic energy in the wake of a grid [7].
The distribution of the dissipation rate ec can be used
in order to determine the scalar to velocity time scale

ratio R de®ned by Eq. (5). As seen in Fig. 13, the time
scale ratio R exhibits a quite constant value over the

major part of the ¯ow®eld, except in the edges zones
where the concentration is too low to be measured

accurately. The numerical value of R is about 0.45,
and a very low streamwise variation of R, exceeding

not 2% between x=d � 38 and x=d � 52 is observed.
Other authors have reported numerical values of the

ratio R. Spadling [16] used R � 0:5 in turbulents jets,
and Launder used R � 0:8 in turbulents shear ¯ows.

3.7. Discussion

The validity of the distribution of ec inferred from
the budjet on the concentration variance equation will
be discussed. The di�erent scales relevant to both iner-
tial range of dynamic and scalar ®eld will be con-

sidered. The inertial range of the dynamic ®eld can be
characterized by the Taylor microscale de®ned by:

l2u � 15n
u2

e
�20�

Fig. 9. Radial distribution of the triple correlation vc2: x=M: w 38; q 40; r 42; � 44; � 46; + 50; ÿ 52. ÐÐÐ Numerical ®t.

Fig. 10. Streamwise distribution of maximum value of the triple correlation vc2:
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Fig. 12. Scalar variance budjet over the cross-section (in normalized values). ± ± ± Advection: 1
2

�U @ c2

@ x � rc

�U �C
2

c

; - - - production:

ÿcv @C@ r � rc

�U �C
2

c

; ± � ± di�usion: ÿ 1
r
@
@ r

rvc2

r � rc

�U �C
2

c

; ÐÐÐ scalar dissipation: ÿec � rc

�U �C
2

c

:

Fig. 11. Radial distribution of the di�usivity At. x=M: Q; r 160; + 220. ± ± ± At calculated with the constant ratio Dt=At: ÐÐÐ

At calculated with numerical ®t of @c2=@ r and experimental data for vc2:
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For statistically homogeneous and quasi-isotropic tur-
bulent ¯ows, u2 � 2

3k, and then:

l2u � 10n
k

e
�21�

The Taylor microscale characterizing the scalar ®eld is
de®ned by Eq. (2):

l2c � 24s
q

ec

�22�

The ratio between the dynamic to scalar microscale is
related to the Schmidt number Sc by:

l2u
l2c
� Sc � 5

12

n
s
k

e
ec

q
�23�

Considering the Schmidt Sc � n=s, relation (23) yields
the theoretical value of the scalar to velocity time scale

ratio R:

R � 5

12
� 0:41 �24�

This value appears to be in very good agreement with
the results found by analysis of the experimental data (R
found experimentally is about 0.45). Moreover, as

observed in the light of the experimental results, the
ratio R appears constant in the streamwise direction and
over the investigated cross-section. This rather good ac-

cordance between theoretical value and experimental
observations of R validates the results obtained from the
budjet over the concentration variance equation.

4. Self similarity of the ¯uctuating scalar ®eld

The self similarity of both concentration and scalar

variance ®elds has been checked experimentally. The
consequences of this self similarity in the concentration
variance equation (Eq. (8)) will be developed in this
section. With the help of the self similar forms de®ned

in Eqs. (9) and (13) for the mean concentration �C and
for the concentration variance c2, using relation (2) for
ec, relation (19) for the model of the di�usion term

and a turbulent di�usivity model for the closure of the
turbulent mass ¯ux cv, Eq. (8) may be rewritten:

@ 2g

@Z2
� @g
@Z

�
1

Z
� bZ

Dt

At

�
� g�Z�

 
4b

Dt

At

ÿ 24
s

l2c

r2c
At

!

� ÿDt

At

ÿ
�Cc

�2
� �c2 �c

2b2Z2eÿbZ
2 �25�

where b � ln�4�, Dt is the turbulent di�usivity coef-
®cient and g�Z� is de®ned by Eq. (13).
The conditions of self similarity requires constancy

of the coe�cients of Eq. (25). The coe�cients which
have to be constant are:

Dt

At

, 24
s

l2c

r2c
At

and

ÿ
�Cc

�2ÿ
c2
�

c

It has been demonstrated in Section 3.5 that the di�u-
sivity At is a constant over the entire ¯ow®eld. The
expansion length scale evolves as r2c0x=M which

Fig. 13. Radial distribution of the scalar to velocity time scale ratio R � �eq�=�kec�: x=M: w 38; � 46; ÿ 52.
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involves that l2c0x=M: The turbulent di�usivity can
be de®ned as in Ref. [10]:

Dt � 1

Cc1
v2
k

e
�26�

where Cc1 � 4:6 is a constant determined with a similar
grid turbulence experiment. Using the expression of

coe�cient At de®ned by the relation (19) the ratio
Dt=At is:

Dt

At

� 1

Cc1K1
� 0:7 �27�

where K1 is a constant de®ned by Eq. (19).

The turbulent di�usivity is almost constant over the
¯ow®eld, and its value is about Dt 10ÿ4 m2/s The
value of At has been determined by using Eq. (27), and

is compared with the experimental data reported in
Fig. 11. Although the signi®cant scatter of the exper-
imental data, the agreement is good enough to be con-
sider as consistent with the assumption that Dt=At is a

constant. Relations (11) and (12) have shown that �C
2

c

and �c2�c decrease as � xM ÿ a�2, where a is a virtual ori-
gin. Although a di�erence of virtual origin, the ratio

between �C
2

c and �c2�c tends to become constant as
shown in Fig. 14, when x=M grows. As written in Eq.
(10), the squared length scale r2c evolves as x=M so

that l2c should also vary as x=M: The real value of the
scalar microscale lc can not be determined, since the
molecular di�usivity is unknown. However, l2c is pro-

portional to c2=ec and the ratio c2=�ecr
2
c � is reported in

Fig. 14. A trend to stabilization at a constant value is

also observed.
On the basis of the experimental data, the self simi-

larity of the ¯uctuating concentration ®eld has been

demonstrated and the parameters necessary to solve
the concentration variance equation have been ®xed.

5. Conclusion

This paper has presented a budjet over the concen-
tration variance equation, of a passive scalar dischar-
ging in a grid generated turbulent ¯ow. All the terms

of the concentration variance equation have been
measured, except the concentration ¯uctuations dissi-
pation rate, which has been deduced from the budjet
of the equation. A gradient model of the triple corre-

lation vc2 has been validated and the value of the tur-
bulent di�usivity of the concentration variance has
been determined. It has been demonstrated that the ap-

proximation advection dissipation is valid over the
major part of the ¯ow®eld and that the streamwise
decay of the concentration ¯uctuations can be written
�U @ c2

@ r 1ÿ ec, similarly to the decay of the turbulent
kinetic energy in the wake of a grid. The determination
of the dissipation rate ec allows the calculation of the

scalar to velocity time scale ratio. The self similarity of
the concentration variance equation has been also
investigated and all the conditions to obtain this self

Fig. 14. Validation of the self similarity of the ¯uctuating concentration ®eld.
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similarity have been validated experimentally. Further
experimental investigation would be valuable in

homogeneous turbulent shear ¯ows in order to vali-
date closure concepts of the concentration variance
equation.
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